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1. Calcolare i seguenti integrali indefiniti.
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2. Calcolare i seguenti integrali definiti.
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3. Determinare tutte le soluzioni delle seguenti equazioni e rappresentatle nel piano di Gauss.
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Le soluzioni sono
ikn
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Quindi up=1, uy =ez =j,uy, =e"=-lLuz=ez = —i
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Pertanto: z=e™" 3 conk =0,1,2.



